
UNCORRECTED P
ROOF

CAM4201
pp: 1-24 (col.fig.: Nil)

PROD. TYPE: COM
ED: Indira

PAGN: VD -- SCAN: Mouli

ARTICLE IN PRESS

Journal of Computational and Applied Mathematics () –
www.elsevier.com/locate/cam

1

Rational approximation preconditioners for sparse
linear systems3

Philippe Guillaumea, Yousef Saadb;1, Masha Sosonkinac;∗;2

aUMR MIP 5640, D�epartement de Math�ematiques, INSA, Complexe Scienti"que de Rangueil,5
31077 Toulouse Cedex, France

bDepartment of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis,7
MN 55455, USA

cDepartment of Computer Science, University of Minnesota-Duluth, 320 Heller Hall, 1114 Kirby Drive, Duluth,9
MN 55812-2496, USA

Received 12 March 2002; received in revised form 3 February 2003; accepted 18 March 200311

Abstract

This paper presents a class of preconditioning techniques which exploit rational function approximations to13
the inverse of the original matrix. The matrix is 3rst shifted and then an incomplete LU factorization of the
resulting matrix is computed. The resulting factors are then used to compute a better preconditioner for the15
original matrix. Since the incomplete factorization is made on a shifted matrix, a good LU factorization is
obtained without allowing much 3ll-in. The result needs to be extrapolated to the nonshifted matrix. Thus,17
the main motivation for this process is to save memory. The method is useful for matrices whose incomplete
LU factorizations are poor, e.g., unstable.19
c© 2003 Published by Elsevier Science B.V.

Keywords: �; �; �21

1. Introduction

Rational approximation preconditioners are targeted at extremely ill-conditioned linear systems.23
Examples of such systems are those that arise in the modeling of thin Shells. These systems tend to

∗ Corresponding author.
E-mail addresses: guillaum@gmm.insa-tlse.fr (P. Guillaume), saad@cs.umn.edu (Y. Saad), masha@d.umn.edu

(M. Sosonkina).
1 This work was supported in part by the U.S. Army Research O=ce under grant DAAD19-00-1-0485, and in part by

the Minnesota Supercomputer Institute.
2 This work was supported by Michelin Americas Research and Development Corporation.

0377-0427/03/$ - see front matter c© 2003 Published by Elsevier Science B.V.
doi:10.1016/S0377-0427(03)00480-1

mailto:guillaum@gmm.insa-tlse.fr
mailto:saad@cs.umn.edu
mailto:masha@d.umn.edu

UNCORRECTED P
ROOF

2 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

be very di=cult to solve by iterative methods despite the fact that they are symmetric positive de3nite.1
One source of di=culty is that the quality of incomplete LU (in this case Cholesky) factorizations for
such matrices can be so poor that they become ineDective. It is tempting to simply shift the matrix3
A by a scalar � and extract the preconditioning for A + �I which is then used for preconditioning
the original matrix, see, e.g., [8]. This by itself may not be su=cient.5
A modi3cation of this idea leads to a more eDective technique. This modi3cation consists of

exploiting a rational approximation to A−1 based on an expansion in terms of the form (A+ �I)−i.7
Because the matrix is shifted, its LU factorization might be a rather accurate representation of A+�I .
It is also more likely to be stable, in the sense de3ned in [6], in that its inverse does not have an9
extremely large norm. Instability of preconditioners in this sense is often the main cause of di=culty
with incomplete LU factorization preconditioners of very ill-conditioned matrices. Thus, we can still11
manage to solve extremely ill-conditioned problems by exploiting incomplete factorizations of A+�I ,
whereas an incomplete factorization for A would almost certainly result in failure.13

Section 2 presents two algorithms for computing a rational preconditioner, which are illustrated on
a simple example. Section 3 reports some error bounds for the conjugate gradient algorithm in the15
special case where the LU factorization of A+�I is computed exactly. A 3rst error bound describes
the behavior of the approximate solution at the beginning of the iteration process, and explains the17
fast decay of the error observed at the 3rst steps in numerical experiments, even when using an
incomplete factorization. A second error bound shows that the rational transformation improves the19
rate of convergence at the asymptotic regime, where, for example, a large accuracy is required.
Finally, some numerical experiments on solving di=cult real-world problems in structural mechanics21
are reported in Section 4.

2. Rational approximation preconditioning23

Consider the linear system

Ax = b;

where A is a nonsingular square matrix of dimension n. A number of iterative methods approximate25
the solution x = A−1b to the above system, by a vector of the form

x̃ = p(A)b;

where p is a certain polynomial. The approximation theory underlying these methods is to approxi-27
mate the rational function s(�)=1=� by a polynomial p(�) of degree d. The approximation is to be
accurate on the (discrete) set of eigenvalues of A. However, preconditioners based on a polynomial29
approximation p(A) of A−1 have their limitations, and as a result they are currently seldom used.

Rational approximations can be considered as an alternative. The 3rst reaction to this possible31
approach is that the problem may not be well de3ned, since the best approximation to 1=� by
rational functions is 1=� itself. A hint at a possible approach is to consider a similar situation that33
is naturally encountered when solving large eigenvalue problems. In shift-and-invert strategies [10],
it is common to compute an eigenvalue �i by using a Krylov-subspace type method on the matrix35
(A−�I)−1, where � is chosen to be close to the desired eigenvalue �i. More general rational Krylov

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 3

subspaces have also been used in [11] for eigenvalue computations. The goal is similar here since1
the inverse function is to be approximated by a rational function with a pole close to the origin.

2.1. Approximations to 1=�3

We wish to obtain the best possible approximation to the function s(�) ≡ 1=� from an expansion
of the form5

1
�
� �0 +

�1
�+ �

+
�2

(�+ �)2
+ · · ·+ �d

(�+ �)d
+ · · · ; (1)

where �¿ 0. We can use a PadNe-type approximation to match both sides of (1), in the variable
t ≡ � + � to the approximation: we multiply both sides by td and require that the expansions in7
terms of tj agree on both sides up to the highest possible degree. A little calculation yields the
approximation9

s(�) �
d∑

i=1

�i−1

(�+ �)i
: (2)

This can alternatively be veri3ed by considering the following expansion:
d∑

i=1

�i−1

(�+ �)i
=

1
�+ �

× 1− (�=(�+ �))d

1− �=(�+ �)

=
1
�

[
1−

(
�

�+ �

)d
]
: (3)

The relative error is given by11

e(�) =
(

�
�+ �

)d

: (4)

The function �s(�) which gives an idea of the eigenvalues of the preconditioned matrix is illustrated
in Fig. 1 for diDerent values of �, with d=3 (left), and d=6 (right), using values of � ranging from13
0:025 to � = 0:375 with increments of 0:05. The smaller � is, the closer the curve to the constant
one. Thus, for the left plot, the highest curve (close to one) corresponds to �=0:025, and the lowest15
one to �= 0:025 + 7× 0:05 = 0:375. For the right plot (d= 6) only the lowest 4 curves are shown.
Notice that for large � all curves are fairly accurate. For the smaller values of �, the quality of the17
approximation is still excellent and stays close to one for small �.

2.2. Compounding ILU and shifting19

Substitution of A for � in (3) leads to an approximation to A−1, given by

A−1 �
d∑

i=1

�i−1(A+ �I)−i: (5)

UNCORRECTED P
ROOF

4 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

p
α

,3
(λ

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ

p
α

,3
(λ

)
Fig. 1. The functions �s(�) in the interval [0:025; 1], for diDerent values of � and d= 3 (left) and d= 6 (right).

The attraction of the above expansion is that it allows to ‘extrapolate’ an approximate LU factoriza-1
tion of a close-by matrix to provide good convergence. Consider for example an ILUT factorization
[14] of the matrix with a small �3

A+ �I = L�U� + R�; M� ≡ L�U�: (6)

Then a rational preconditioning operation used for preconditioning the original matrix A can be
de3ned by5

M−1v=
d∑

i=1

�i−1M−i
� v: (7)

If the matrix M� is symmetric, then the preconditioner M is also symmetric, and can be used by
the conjugate gradient algorithm. An algorithm for computing w =M−1v is the following.7

Algorithm 2.1. Symmetric rational preconditioning operation

1. w := v
2. Do j = 1 :d− 1
3. w := v+ �M−1

� w
4. EndDo
5. w := M−1

� w.9

In order to relate this new technique with already known methods, consider the special case when
an exact factorization is employed (i.e., R� = 0 in (6)) in the above algorithm. In this situation11
observe that �M−1

� = I −AM−1
� and as a result the preconditioning operation in line 3 of Algorithm

2.1 can also be written as w := v + (I − AM−1
�)w. This yields an alternative algorithm which can13

be viewed as a generalization of Algorithm 2.1.

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 5

Algorithm 2.2. Nonsymmetric rational preconditioning operation1

1. w := v
2. Do j = 1 :d− 1
3. w := v+ (I − AM−1

�)w
4. EndDo
5. w := M−1

� w.

An approximate LU factorization M� of A + �I can also be used in the same manner as before.3
However, the resulting preconditioner will no longer be symmetric in general, even if A is symmetric,
but symmetry may be recovered in the usual way when M� is available in the factored form M� =5
L�LT

� , see, e.g., [14].
It is interesting to compare these two approaches, at least theoretically. Recall that the main7

idea of the rational approximation preconditioner is to approximate A−1 from expansions of an LU
factorization of a near-by matrix, speci3cally A+ �I . We 3rst consider the case when M� represents9
an exact factorization of A+ �I . In that case, Algorithm 2.1 can be derived from the equality

A−1 = [(I − �M−1
�)M�]−1 =M−1

� [I − �M−1
�]−1

by applying a Neumann series expansion to approximately invert the bracketed term. In contrast,11
Algorithm 2.2 is based on approximating again A−1, but through the identity

A−1 = [(I − (I − AM−1
�))M�]−1 =M−1

� [I − (I − AM−1
�)]−1

to which, again, a standard Neumann series expansion is applied to approximate the inverse of the13
second term of the right-hand side.

In the general case of an incomplete LU factorization, we have from (6)15

I − AM−1
� = (�I − R�)M−1

� :

The preconditioning matrix of Algorithm 2.1 can be written as

M−1
�

d−1∑
i=0

�iM−i
� =M−1

� (I − �M−1
�)−1(I − �dM−d

�) (8)
17

= (A− R�)−1(I − �dM−d
�): (9)

The preconditioning matrix of Algorithm 2.2 corresponds to

M−1
�

d−1∑
i=0

(I − AM−1
�)i =M−1

� (AM−1
�)−1(I − [I − AM−1

�]d) (10)
19

= A−1(I − [(�I − R�)M−1
�]d): (11)

As is expected, Algorithms 2.1 and 2.2 coincide only when the factorization is exact (R� = 0).
Denote by P1 the preconditioning matrix in (8) and by P2 the preconditioning matrix de3ned by21
(10). The preconditioned matrices APi; i=1; 2 are more relevant to understanding the quality of the23

UNCORRECTED P
ROOF

6 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

preconditioner. They are given by1

AP1 = (I − R�A−1)−1(I − �dM−d
�); (12)

AP2 = I − [(�I − R�)M−1
�]d: (13)

Since �I −R� =M� −A, the preconditioned matrix AP2 related to the second algorithm is fairly easy
to analyze. Its eigenvalues are equal to 1− (1− �)d, where � represents a generic eigenvalue of the3
matrix AM−1

� . In contrast, the eigenvalues of the preconditioned matrix AP1 are not related in an
easy way to those of M−1

� A, except in special situations, such as when M� = A+ �I .5
We now compare formulas (12) and (13), in the general case when R� �= 0. Consider 3rst the

situation when R� is small, say much smaller than �. Then the residual matrix for the Neumann series7
preconditioner would be of the order of �d in both cases, and so the accuracy of both algorithms
is likely to be comparable. However, Algorithm 2.2 is more expensive than Algorithm 2.1 because9
of the extra matrix–vector product with A. An interesting case is when A is a dense matrix arising
from electromagnetics and M� is a sparse preconditioner to A+�I . In this case, vector products with11
A are very expensive and Algorithm 2.1 is certainly advantageous.

Consider now the reverse situation when � is very small compared with R� as measured by a13
certain norm. In this case, the error for Algorithm 2.1 is of the order of ‖R�‖, while we obtain an
order of ‖R�‖d for Algorithm 2.2. Roughly speaking, this tells us that when R� is large relative to15
�, the use of Algorithm 2.1 will make little sense, because the potential gain from the expansion
in � is annihilated by the large error in R�.17

In summary, Algorithm 2.1 is likely to be competitive with the more traditional Algorithm 2.2
only when � is large enough and R� is small. In all cases when Algorithm 2.1 is employed, the ILU19
factorization of A + �I should be fairly accurate. If not, the resulting procedure can be ineDective,
a fact that is con3rmed by experiments. However, it is often not a problem to compute an accurate21
ILU factorization of A + �I provided an adequate shift � is applied. All these facts are illustrated
on a simple example in the next sections.23

2.3. A simple illustration

In order to illustrate the points of the above discussion we now consider a test example using MAT-25
LAB. The linear system considered simulates a problem which arises in the stream-function/vorticity
formulation of the Navier–Stokes equations in two dimensions. As is well known [2,7] this formu-27
lation leads to a nonlinear equation of the form

F() = �2 + Re[y(R)x − x(R)y]:

Here �2 represents the biharmonic operator, and ux; uy represents the partial derivatives of the29
function u with respect to x and y, respectively. The diDerential of the above system is represented
by the linear operator:31

DF
D

u ≡ �2u+ Re[(R)xuy − (R)yux + y(Ru)x − x(Ru)y]:

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 7

For the sake of simplicity let us assume that y and x are constant, 3 so the diDerential simpli3es1
to

DF
D

u= �2u+ Re[y(Ru)x − x(Ru)y]: (14)

We take a regular grid of size nx×ny with nx=ny=35. The Reynolds number is set at Re=500. All3
partial diDerential operators are discretized by centered diDerences so the biharmonic and Laplacean
operators are approximated with the following 13-point and 5-point stencils:5

�2 ≈ 1
h4




1

2 −8 2

1 −8 20 −8 1

2 −8 2

1



; � ≈ 1

h2




1

1 −4 1

1


 :

The 3rst-order diDerentiation corresponding to the operator y(:)x − x(:)y which is applied to R
in (14) is also accomplished with centered diDerences via the stencil7

1
2h




− x

− y 0 y

 x


 :

The resulting Jacobian is then given by the matrix

A=
1
h4

B+
Re
2h3

E × L;

where B and L are the matrices corresponding to the biharmonic and Laplacean stencils, and E9
corresponds to the 3rst-order derivation stencil shown above. Normally, boundary conditions would
be applied and the matrices would change accordingly. However, this is not done here. We have11
used the following parameters:

nx = ny = 35; Re = 500; x =−0:15; y =−0:05:

The 3nal matrix is scaled by h4 and the right-hand side is set to be the vector having a value of one13
on the 3rst side of the domain, corresponding to the 3rst nx = 35 unknowns, and zero elsewhere.
Results for 4 diDerent methods are shown in Fig. 2. First, a standard ILU factorization is computed15

using the MATLAB command iluinc(A,droptol) with a drop tolerance of droptol=0:1. The resulting
preconditioner is fairly unstable in this case, as is indicated from the MATLAB function command17
condest(L*U), which gave a large value of est = 1:88e + 11. As one might expect GMRES(30)
stagnates in this case (top curve). Then the matrix is shifted using the shift �=1:5 and GMRES(30) is19
retried with the new preconditioner. The condition number of the preconditioner now comes down to
condest(LU)=1.398e+05. This is used as a preconditioner for GMRES(30) which results in a slight21
improvement but no convergence in the maximum number of steps allowed (solid curve). The same

3 This can also be viewed as a secant method for solving the nonlinear equations, where the Jacobian is approximated
by the one obtained from values of x; y at the previous Newton step.

UNCORRECTED P
ROOF

8 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

0 50 100 150
-10

-8

-6

-4

-2

0

2
 Re = 500, ψ

x
= -0.15, ψ

y
= -0.05, α =1.5, d = 4

iterations

re
si

du
al

 n
or

m

ILU-noshift
ILU-shift
Alg. 1, droptol=0.01
Alg. 2, droptol=0.1

Fig. 2. Solution of the model stream function linear system of size 1225, solved by GMRES(30) preconditioned in 4
diDerent ways.

preconditioner is now used in conjunction with Algorithm 2.1. Since the accuracy is rather poor, this1
method stagnates and the corresponding curve, which is not shown, is almost identical with the 3rst
(top) curve. Algorithm 2.2 on the other hand yields good convergence (dash–dotted curve). To verify3
the explanations given above, we performed another experiment with Algorithm 2.1 with a fairly
accurate ILU factorization, one that is obtained from MATLAB with a drop tolerance droptol = 0:01.5
With this factorization, Algorithm 2.1 converges similarly to Algorithm 2.2 (dotted line). One might
argue here that applying Algorithm 2.1 is more expensive. As was explained before, this is certainly7
not true when the matrix A is fairly dense. For this particular example, Algorithm 2.1 is in fact more
advantageous than Algorithm 2.2. Indeed for droptol = 0:1 the total number of nonzeros for L and9
U together is nnz(M) = 4761 + 3605 = 8636 and this increases to nnz(M) = 9303 + 8194 = 17; 497
for the more stringent droptol = 0:01. The number of nonzero elements in the original matrix A is11
nnz(A) = 15; 229. So each of the d − 1 sub-steps (represented by line 3 in both algorithms) costs
17; 497+1225=18; 722 operations for Algorithm 2.1 and 15; 229+8636+1225=24; 840 operations13
for Algorithm 2.2. For Algorithm 2.1, when d=4, this is done 3 times and another solve with M is
applied in line 5 leading to a total of 18; 722× 3 + 17; 497 = 73; 663 operations. For Algorithm 2.2,15
this count becomes 24; 840× 3+ 8636= 83; 156. Clearly, the advantage for Algorithm 2.1 improves
as d increases. Another point to make here is that this problem is actually not a hard one to solve.17
A good ILU factorization is obtained for the nonshifted matrix when a small enough drop tolerance
is used.19

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 9

2.4. Inner–outer rational preconditioning1

An appealing alternative to the above approach aims at extracting an optimal solution from the
iterates of Algorithm 2.1. Instead of a preconditioning of the form (7) we may seek a preconditioned3
vector of the form

M−1v=
d∑

i=1

�iM−i
� v;

where the scalars �i are determined to minimize the residual norm ‖v− Aw‖2. In the case when M5
does not represent an accurate ILU factorization, we already know that such a sequence is not likely
to be eDective. It is therefore more general and eDective to seek an optimal combination of iterates7
from Algorithm 2.2. This means that we seek a combination of the vectors of the preconditioned
Krylov subspace9

K�;d = span{M−1
� Av; : : : ; (M−1

� A)dv}:
The usual least-squares solution obtained by GMRES is calculated to minimize the residual norm.
This method is nothing but an inner–outer GMRES iteration, in which the inner solve is itself11
a GMRES iteration using a Krylov subspace of dimension d. In this case, the preconditioner is
modi3ed at each step, hence a Sexible accelerator such as FGMRES [12] must be used. Numerical13
results indicate that this is more costly but often more eDective than the simple expansion (7) (see
Fig. 5).15

2.5. A multiscale-type procedure using di?erent shifts

It is often observed that after a certain number of steps the convergence of GMRES slows down17
considerably, sometimes to the point of stagnating. This usually means that certain modes are not
captured by the iterative process. Assume that the incomplete factorization is exact and consider19

A+ �I = L�U�:

According to (9) with R�=0, the preconditioning matrix which is de3ned by Algorithm 2.1 is equal
to21

M−1 = A−1(I − �d(A+ �I)−d)

and so the residual matrix, which is

I − AM−1 = �d(A+ �I)−d

has eigenvalues:23

%i =
(

�
�i + �

)d

;

where �i is an arbitrary eigenvalue of A. These are the same functions as the errors in (4) (hence Fig.
1 plots also the function 1−%i). It is clear that for large � those residual components associated with25
eigenvalues �i that are close to zero will not be reduced much. Notice that any eigenvalue outside
the disk TD(−�; �) centered at −� and of radius �, will be damped, i.e., it will be transformed into27

UNCORRECTED P
ROOF

10 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

Im (λ)

Re (λ) - α
O

Fig. 3. Damping region for preconditioner is outside the disk.

an eigenvalue smaller than one. Eigenvalues inside the disk can cause serious di=culties since they1
can be ampli3ed and become very large if d is large.

Assuming that there are no eigenvalues inside the disk (as is the case for positive de3nite ma-3
trices), all damping ratios will be less than one. The farther away �i is from the center −� the
smaller will be the damping ratio. Those eigenvalues close to the circle of center −� and radius5
� will have a damping ratio close to one. The concentric arcs in Fig. 3 show the lines where the
eigenvalues have the same damping factor %. If � is not changed during the iteration process, then7
the eigencomponents of the residual which have small damping ratio (corresponding to large eigen-
values) will be eliminated quickly. Those with damping ratios close to one (for example those close9
to the origin) are likely to change very little. What would be ideal is to have a procedure that does
not disturb those small residual components achieved in earlier steps, but that reduces those closer11
to the origin further. This can be easily done by reducing �, say, at the occasion of a restart in
the GMRES(m) algorithm. Experiments do indeed show that this principle works: similar to other13
multiscale methods, it is much better to work on diDerent parts of the spectrum—using diDerent
stages—rather than using a preconditioner based on a single �.15

2.6. Tests with inner–outer techniques and variable shift

We now go back to the example of Section 2.3 to illustrate the techniques of the previous two17
sections. For the variable shift strategy of Section 2.5, we do not use a diDerent factorization for
each diDerent �, since this would be prohibitive. Instead, the same LU factorization as for the other19
methods is used, i.e., the one obtained with the shift � = 1:5 and using the same drop tolerance
of 0.01. The variable shift strategy is used in conjunction with Algorithm 2.2. The variation of �21
occurs in line 3 which is replaced by w := v + (I − (A + �I)M−1

�)w. The resulting preconditioner
becomes23

(A+ �I)−1(I − [([�− �]I − R�)M−1
�]d)

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 11

0 20 40 60 80 100 120 140 160
10

-10

10
-8

10 -6

10 -4

10 -2

100

102
 Re = 500, ψ

x
= -0.15, ψ

y
= -0.05, α = 1.5, d = 3

iterations

re
si

du
al

 n
or

m

Alg. 2, droptol=0.1
Inn-Out. GMRES
Alg. 2 w. variable shift

Fig. 4. Solution of the model stream function linear system with Re = 500.

instead of (see Eq. (11))1

A−1(I − [(�I − R�)M−1
�]d):

Hence � has been changed to � − � in the right parentheses, with 0¡�¡�, thus (partially) de-
creasing � as proposed in Section 2.5. Regarding the shifting strategy, the initial shift � is set to3
� = 0:05 then at each FGMRES outer iteration � is increased by)� ≡ 0:01. Other strategies for
shifting have been tested but did not yield better results.5

Fig. 4 compares three diDerent methods: Algorithm 2.2, inner–outer GMRES of Section 2.4 and the
variable-� procedure of Section 2.5. In order to have shorter restarts, the Krylov subspace dimension7
was reduced from m=30 to 20. All other parameters remain the same as in the example of Section
2.3. In particular, the shift � is again 1.5, and the drop tolerance for iluinc is droptol=0:1, yielding9
the same ILU factorization. The degree d has been set to d=3. This is also the subspace dimension
for the inner GMRES iteration in inner–outer GMRES algorithm. In this particular case, the inner–11
outer GMRES iteration does not converge. Algorithm 2.2 (with 3xed shift) behaves similarly to
the case with m = 30 shown in Section 2.3. The interesting observation is that the variable shift13
Algorithm does much better than the other 2 algorithms. Note that this improvement is achieved with
a small change to Algorithm 2.2, since in most iterations the shift � is rather small ! Observe also15
that this method uses about the same number of operations per iteration as Algorithm 2.2 (without
shift) and fewer than the inner–outer GMRES method. Although only iteration counts are shown,17
the plots in Figs. 4 and 5 do provide some idea of the operations cost in some cases.

UNCORRECTED P
ROOF

12 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

0 20 40 60 80 100 120
10-10

10-8

10 -6

10

10
 -2

100

102
 Re= 300, ψx = -0.15, ψy = -0.05, α =1.5, d=3

iterations

re
si

du
al

 n
or

m

ILU no- shift, droptol=0.05
Alg. 2, droptol=0.05
Inn- Out. GMRES
Alg. 2 w. variable shift

 -4

Fig. 5. Solution of the model stream function linear system with Re = 300.

As was mentioned above, the inner–outer GMRES iteration did not perform too well in this1
example. In our experience we found that this happened occasionally but that this occurrence is by
no means general. For example, in the next test we changed the Reynolds number to Re= 300 and3
computed the ILU factorization with a better accuracy using droptol = 0:05. In that case, we had
condest(LU)=3.1e+05 without shift and condest(LU)=138 with shift. The ILU factorization for5
the matrix A (without shift) is accurate and fairly stable—so the corresponding ILU preconditioning
works well in this case. The corresponding run is shown in a dotted line in Fig. 5. As is expected7
in this case not much can be gained from the rational approximation preconditioner. In particular,
the variable shift technique is no longer competitive with the inner–outer GMRES technique which9
does quite well.

3. Analysis in the case of an exact factorization11

This section gives some error bounds for the CG algorithm applied to the solution of the precon-
ditioned system13

Bx := M−1Ax =M−1b: (15)

The rational transformation B = r(A) makes the spectrum of B clustered around 1, and the usual
error bound for the CG algorithm can be improved, both for the 3rst iterations and asymptotically.15

Here it is assumed that the LU factorization is exact, i.e., R� = 0 in (6). As was already seen,
this means that Algorithms 2.1 and 2.2 coincide. The case of an approximate LU factorization is17

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 13

more di=cult to analyze, though one can expect the behavior to be similar if the perturbation of the1
exact factorization remains small. As was mentioned in Section 2.2 and observed in the numerical
experiments in Sections 2.3 and 2.6, the ILU factorization of A + �I should be fairly accurate in3
order to obtain an eDective procedure.

The matrix A is assumed to be symmetric positive de3nite, with increasingly ordered5
eigenvalues �i,

0¡�16 �26 · · ·6 �n = 1;

associated to normalized eigenvectors vi; i = 1; : : : ; n. The preconditioning operation corresponding7
to (3) is modi3ed by a constant + into

r(�) =
1
+

[
1−

(
�

�+ �

)d
]
; + = 1−

(
�

1 + �

)d

; (16)

where r(0) = 0, r(1) = 1, and the eigenvalues of B := r(A) are9

,i = r(�i); 16 i6 n: (17)

The choice of + ensures that ,n = r(�n) = 1. As the matrix A is assumed to be ill-conditioned, the
eigenvalue �1 is very close to 0, and the shift � can be chosen greater than �1, but still noticeably11
smaller than 1. Hence + � 1. The matrix B remains symmetric positive de3nite, and has the same
eigenvectors vi as A.13

Let x = A−1b be the exact solution. We denote by xm the approximate solution obtained at the
mth step of the CG algorithm applied to the matrix A, and by ym the approximate solution obtained15
with the matrix B, starting with y0 = x0. A well-known optimality property of the CG algorithm,
states that17

‖ym − x‖2B = min
p∈Pm; p(0)=1

‖p(B)(x0 − x)‖2B; (18)

where Pm is the set of polynomials of degree at most m, and ‖:‖B is the B-norm de3ned by
‖z‖2B = (Bz; z). The minimizer pm of (18) and the vector ym are related by ym − x=pm(B)(x0 − x).19
The classical error bound for the CG algorithm applied to the solution of the system Ax = b is

given by21

‖xm − x‖2A6 4
(
1−√

�1
1 +

√
�1

)2m
‖x0 − x‖2A; (19)

whereas the error for the preconditioned system (15) is

‖ym − x‖2B6 4
(
1−√

,1

1 +
√
,1

)2m
‖x0 − x‖2B: (20)

3.1. Error bounds for the "rst iterations23

For given k¿ 0 and m¿ 1, let

p(t) =
Tm[1 + 2(,k+1 − t)=(1− ,k+1)]

Tm[1 + 2,k+1=(1− ,k+1)]
(21)

UNCORRECTED P
ROOF

14 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

be the scaled Chebyshev polynomial that is small in the interval [,k+1; 1] (recall that ,n = 1). It1
satis3es p(0) = 1 and the following bounds, see e.g., [14]:

p2(t)6 1; ∀t ∈ [0; 1]; (22)

p2(t)6 0 := 4
(
1−√

,k+1

1 +
√
,k+1

)2m
∀t ∈ [,k+1; 1]: (23)

We have3

‖p(B)(x0 − x)‖2B =
n∑

i=1

p2(,i)e2i ,i; e2i ,i¿ 0;

where ei = (x0 − x; vi) is the initial error projected on the eigenvector vi. The initial error ‖x0 − x‖2B
can be split into two parts as follows:5

‖x0 − x‖2B = S1 + S2;

S1 =
k∑

i=1

e2i ,i; S2 =
n∑

i=k+1

e2i ,i:

Then, using (22) and (23), we obtain

‖p(B)(x0 − x)‖2B =
k∑

i=1

p2(,i)e2i ,i +
n∑

i=k+1

p2(,i)e2i ,i6 S1 + 0S2;

from which it follows that7

‖ym − x‖2B6 S1 + 4
(
1−√

,k+1

1 +
√
,k+1

)2m
‖x0 − x‖2B: (24)

Observe that the special choice k = 0 leads to S1 = 0 which yields inequality (20) as a particular
case.9

Up to now, we have not exploited the clustering of the spectrum of B = r(A) around 1. A
consequence of this clustering is that S1 = S1(k) may be small while at the same time ,k+1 is close11
to 1. We have ,k+1 = r(�k+1) with

�k+1 = c�

for a certain positive number c. We must keep in mind that we want to use an � larger than �113
but smaller than 1, which gives the possible range for c. We now de3ne L to be the smallest scalar
independent of � and k, for which15

k∑
i=1

e2i 6 �kL‖x0 − x‖2 ∀k = 1; 2; : : : ; n: (25)

Recalling that ‖x0 − x‖2 =∑n
i=1 e

2
i , note that the linear function l(�) ≡ L� can be viewed as an

upper bound for the density function, a step function whose value at each eigenvalue �j is de3ned17
by

4(�j) =
∑j

i=1 e
2
i∑n

i=1 e
2
i
:

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 15

10 20 30 40 50 60 70 80
-8

-7

-6

-5

-4

-3

-2

-1

0

1

number of iterations

lo
g1

0
of

 th
e

re
la

tiv
e

||.
|| B

 e
rr

or

n = 1000, λ1 = 1e- 06, L = 10, α = 0.01, d = 3

erbound1
erbound2
numerical test

Fig. 6. Error bounds ‖ym − x‖B.

For example, if the matrix A has a uniform spectrum �i = i=n and if e2i =1 for all i, then (25) holds1
for L = 1. A large value of L corresponds to a clustering of the spectrum of A near 0, or to an
initial error x0−x essentially concentrated on the eigenspace associated with the smallest eigenvalues.3
Then we have the following error bound, which explains the fast decay of the error observed at the
beginning of the iteration process (see Figs. 6 and 7).5

Proposition 3.1. For �¿ 0, let c¿ 0 be chosen such that c� = �k+1 is an eigenvalue �k+1 of the
matrix A. Then7

‖ym − x‖2B6

c�L+ 4

(
1√

(c + 1)d +
√

(c + 1)d − 1

)4m

 ‖x0 − x‖2: (26)

Proof. Since ,i6 1 and by assumption (25), we have

S1 =
k∑

i=1

e2i ,i6
k∑

i=1

e2i 6 �kL‖x0 − x‖2:

It follows from (24), �k 6 �k+1 = c�, ‖ · ‖B6 ‖ · ‖ and ,k+1 = r(�k+1) that9

‖ym − x‖2B6

c�L+ 4

(
1−√r(c�)

1 +
√

r(c�)

)2m

 ‖x0 − x‖2:

UNCORRECTED P
ROOF

16 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

10 20 30 40 50 60 70 80

number of iterations

erbound1
erbound2
numerical test

n = 100000, λ1 = 1e-06, L = 10, α = 0.0001, d = 3

-8

-7

-6

-5

-4

-3

-2

-1

0

1

lo
g1

0
of

 th
e

re
la

tiv
e

||.
|| B

 e
rr

or

Fig. 7. Error bounds ‖ym − x‖B.

For 0¡r¡ 1, and since +r¡r, we have1

1−√
r

1 +
√
r
6

1−√+r

1 +
√

+r
=

(√
1− +r

1 +
√

+r

)2

;

then, using

+r(c�) = 1− 1=(c + 1)d;

we obtain3

1−√r(c�)

1 +
√

r(c�)
6

(√
1=(c + 1)d

1 +
√
1− 1=(c + 1)d

)2

=

(
1√

(c + 1)d +
√

(c + 1)d − 1

)2

: (27)

which completes the proof.

We can notice that if we use the polynomial5

p(t) =
Tj[1 + 2(,k+1 − t)=(1− ,k+1)]

Tj[1 + 2 ,k+1
1−,k+1

]
× Tm−j[1 + 2(,1 − t)=(1− ,1)]

Tm−j[1 + 2,1=(1− ,1)]
;

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 17

instead of (21), then the following bound is obtained for 16 j6m:1

‖ym − x‖2B6 4


c�L+ 4

(
1√

(c + 1)d +
√

(c + 1)d − 1

)4j

(1−√

,1

1 +
√
,1

)2(m−j)

‖x0 − x‖2:

However, for large m, the following section shows that a much stronger bound can be obtained.

3.2. Asymptotic error bounds3

A strategy based on an idea described in [13], which takes advantage of the clustering of the
spectrum of B = r(A) around one, is now used for obtaining asymptotic error bounds. Instead of5
standard Chebyshev polynomials that are small in the interval [,1; ,n] we will use the following
modi3ed polynomial:7

Cm(t) =
k∏

i=1

(
,i − t
,i

)
× Tm−k[1 + 2(,k+1 − t)=(,n − ,k+1)]

Tm−k[1 + 2(,k+1)=(,n − ,k+1)]
:

This consists of two parts. The 3rst is a product term which takes the value zero for the 3rst k
smallest eigenvalues ,1; : : : ; ,k . The second is a standard scaled Chebyshev polynomial which is9
small in the interval [,k+1; ,n]. Note that Cm is of degree m and that Cm(0) = 1. Since Cm(,i) = 0
for i = 1; : : : ; k, the maximum of Cm on the spectrum of B is11

max
,j∈6(B)

|Cm(,j)|6 max
j=k+1;:::; n

k∏
i=1

∣∣∣∣,i − ,j

,i

∣∣∣∣× 1
Tm−k[1 + 2(,k+1)=(,n − ,k+1)]

: (28)

Proposition 3.2. For �¿ 0, let c¿ 0 be chosen such that c� = �k+1 is an eigenvalue �k+1 of the13
matrix A. Then, for m¿ k, we have

‖ym − x‖B6
27k(�)

[
√

(c + 1)d +
√

(c + 1)d − 1]2(m−k)
‖x0 − x‖B; (29)

where15

7(�) =
1− ((�1 + �)=(1 + �))d

((�1 + �)=�)d − 1
: (30)

Proof. Consider 3rst the product term

max
j=k+1;:::; n

k∏
i=1

∣∣∣∣,i − ,j

,i

∣∣∣∣=
k∏

i=1

∣∣∣∣,i − ,n

,i

∣∣∣∣6
[
,n − ,1

,1

]k
:

Recall that ,n = 1. We denote by 7(�) the term (1− ,1)=,1 inside the parentheses:17

7(�) =
1− 1

+ (1− �d=(�1 + �)d)
1
+ (1− �d=(�1 + �)d)

UNCORRECTED P
ROOF

18 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

=
1− �d=(1 + �)d − 1 + �d=(�1 + �)d

1− �d=(�1 + �)d

=
�d=(�1 + �)d − �d=(1 + �)d

1− �d=(�1 + �)d
:

Multiplying numerator and denominator by (�1+�)d=�d yields (30). Next, the second term is bounded1
by

1
Tm−k[1 + 2(,k+1)=(1− ,k+1)]

6 2
(
1−√

,k+1

1 +
√
,k+1

)m−k

and, using (27) once more, we obtain for ,k+1 = r(c�)3

1
Tm−k[1 + 2(,k+1)=(,n − ,k+1)]

6 2

(
1√

(c + 1)d +
√

(c + 1)d − 1

)2(m−k)

which completes the proof.

A fair comparison would be between one step of the rational preconditioner versus d steps of5
the standard preconditioned conjugate gradient applied with some accurate ILU preconditioner. This
is because applying r(A) uses d solves with the LU factorization—which is likely to dominate the7
cost. For these d steps the convergence factor as inferred from the standard bound is given by

%̃=
(
1−√

�1
1 +

√
�1

)d

which is to be compared with the asymptotic convergence factor,9

%(c)6

(
1√

(c + 1)d +
√

(c + 1)d − 1

)2

:

The above asymptotic argument ignores the potentially large constant in the numerator of (29).
However, it gives a rough comparison of the situation at the asymptotic regime where, for example,11
a large accuracy is required.

The estimated error bounds resulting from Propositions 3.1 and 3.2 are illustrated by the curves13
erbound1 and erbound2 in Figs. 6 and 7 for two sets of parameters: d = 3, �1 = 10−6, L = 10,
n= 103, �= 10−2 in Fig. 6, and d= 3, �1 = 10−10, L= 10, n= 105, �= 10−4 in Fig. 7. The other15
eigenvalues were chosen as follows:

�k =max(�1 + (k − 1)=(nL); (2k − n)=n); 26 k6 n:

The two curves erbound1 and erbound2 complement each other since the 3rst estimate is better17
than the second one for the earlier iterates. They are compared to numerical results obtained from
the CG algorithm preconditioned with Algorithm 2.1. The matrix A is of the form A=QT6Q where19
Q is a randomly chosen sparse orthogonal matrix and 6 is diagonal with 6kk =�k . The factorization
was not completely performed: we used the MATLAB command U= cholinc(A+alpha ∗ I,droptol)21
with droptol= �2.

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 19

Table 1
Description of test problems

Name n nz Dominance (%) Symmetry Matrix source

ELTCOQUE 38,002 949,452 0.6 Yes Shell modeling
MCHLNF 49,800 4,136,484 5 Yes Tire design
MCHLNE 49,800 4,136,580 4.6 No Tire design

4. Rational acceleration for realistic problems1

This section reports on a few numerical experiments (on a DEC Alpha) with the rational pre-
conditioning techniques for solving di=cult real-world problems in structural mechanics. For these3
problems, a straightforward application of standard preconditioning techniques, such as an incomplete
LU factorization, fails due to their instability. Diagonal shifting and large 3ll-in may be needed to5
achieve convergence as reported in [16] for tire design problems. However, choosing the best shift
value can be time consuming, and the preconditioning becomes quite expensive to apply in the case7
of large 3ll-in. We attempt to show how rational preconditioning (Algorithm 2.1 or 2.2) can handle
these di=culties. Since the purpose of the experiments shown here is to solve realistic applications9
problems more e=ciently using a form of rational approximation, we present the experimental re-
sults for either Algorithm 2.1 or 2.2 depending on which algorithm we found to perform better for11
a particular problem. For a comparison of the two algorithms, see Section 2.3.

4.1. Test problems and the components of the iterative solution13

For the experiments, we have selected a few linear systems arising in shell modeling and tire
design. Table 1 gives some information about the problems. The matrix ELTCOQUE comes from the15
discretization of thin shells, using DKT12 elements (Discrete KirchoD Triangle with 12 ddl, [1]), and
was provided by CADOE S.A. The matrices MCHLNF and MCHLNE come from the discretization17
of nonlinear static equilibrium equations in tire problems, and were provided by Michelin Americas
Research and Development Corporation. Columns denoted by n and nz give the numbers of rows19
and nonzero entries in the matrices, respectively. Column Dominance shows the ratio of diagonally
dominant rows to the matrix size. This number gives a good indication of the di=culty of the21
corresponding linear system. The matrices have a small percent of the diagonally dominant rows,
and thus we can expect the linear systems to be quite di=cult. All the matrices in Table 1 are23
structurally symmetric. The symmetry in value is indicated in Column Symmetry.

Restarted GMRES was used as the accelerator. Speci3cally, the FGMRES(k) variant, which al-25
lows variable preconditioning [14], was employed in cases when the preconditioner changes during
iteration. DeSated GMRES(k) [3,9] was used in cases of stagnation. In deSated GMRES(k) the27
eigenvectors corresponding to a few smallest eigenvalues are added to the Krylov subspace to pre-
vent stalling of the GMRES(k) convergence. For both FGMRES(k) and deSated GMRES(k), the29
Krylov subspace dimension is equal to 54 and includes four injected eigenvectors in the case of
deSated GMRES(k). We took a random initial guess with the right-hand side constructed such that31
the solution is the vector of all ones. For these problems, the eDects of the arti3cial right-hand side

UNCORRECTED P
ROOF

20 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

and the one coming from the application have been studied in [16]. It has been observed that the1
arti3cial right-hand side does not make these problems easier and that both right-hand side types
result in a similar convergence pattern.3

Rational acceleration is applied to the factorization produced by the algebraic recursive multilevel
solver (ARMS) [15]. This choice of the preconditioner is motivated by the versatility of ARMS and5
its ability to solve e=ciently the structural mechanics problems. ARMS is an algebraic multigrid-like
algorithm that requires no underlying set of grids for de3ning prolongation and restriction operators.7
ARMS works by reordering the matrix in the block form(

B F

E C

)
;

in which B is diagonal or block-diagonal with small blocks. The above matrix is then approximately9
block-factored as(

B F

E C

)
≈
(

L 0

G I

)(
U W

0 S

)

using again dropping strategies. Then the reordering and factorization were repeated recursively on11
the Schur complement matrix S, for a small number of levels. At the last level the matrix S is factored
using again a standard ILUT or ILUTP factorization. Both the construction of the preconditioner13
and the forward–backward solutions in ARMS are recursive. In addition ARMS allows inter-level
iterations (referred to as W-cycles in the multigrid literature), though these tend to be fairly expensive15
if the number of levels is high.

A particular instance of the ARMS preconditioner as well as the ARMS performance for a given17
iterative algorithm are controlled by several parameters, such as the block size and number of levels
specifying the block and level preconditioner structures, respectively. We allow no inner iterations19
in the levels of ARMS to reduce the time of the preconditioning operation. Varying the number of
ARMS levels from 2 to 5 did not aDect the preconditioner performance, but fewer levels make the21
preconditioner construction less expensive. Thus, the number of levels was chosen to be equal to
two. Our experience shows that taking small blocks (of size 3 or 10) instead of larger blocks (say,23
of size 100) often yields better overall performance.

Filtering small (less the 10−3) oD-diagonal entries in the matrix from which the preconditioners25
are built speeds up their construction since fewer nonzero entries remain in the original and precon-
ditioner matrices. We have observed that in the given problem types after such a 3ltering process,27
the majority of (weakly) diagonally dominant rows have all their oD-diagonal entries dropped. The
corresponding rows constitute an independent set, which we call the trivial independent set. These29
rows are properly permuted by setting the independent set tolerance in ARMS to 1, see [15].

4.2. Rational acceleration and the accuracy of preconditioning31

With a rational acceleration (Algorithm 2.1), a less accurate preconditioning matrix (i.e., with a
small 3ll-in) may be su=cient to achieve a good convergence. For the MCHLNF and MCHLNE33
problems, Table 2 shows the results of the three runs of an experiment in which the accelera-
tion degree was increased in each run while the amount of preconditioner 3ll-in was halved. The35

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 21

Table 2
Dependence of the execution times on the degree of rational acceleration and the preconditioner accuracy

Name (Degree, Fill-in) nz Construction Solution Iterations

MCHLNF (2,240) 22,161,175 1327.12 1988.43 564
(3,120) 11,301,437 726.81 1417.35 465
(4,60) 5,710,647 410.15 1412.13 541

MCHLNE (2,240) 22,161,330 1286.47 2256.35 626
(3,120) 11,286,156 696.18 1575.95 508
(4,60) 5,621,009 381.48 1406.52 550

total number of nonzero elements in the preconditioning matrix is shown in column 2. Columns1
Construction and Solution give the preconditioner construction and solution times (in seconds),
respectively. The number of outer deSated GMRES(54) iterations is stated in column 5. The shift3
value � and the ARMS dropping tolerance have been kept constant and equal to 0.8 and 0.0, re-
spectively. The reduction of 106 in the residual norm has been achieved by deSated GMRES(54).5

As expected, the preconditioner construction time is almost proportional to the amount of 3ll-in
and aDects signi3cantly the total execution time. The preconditioning application cost itself increases7
when the degree d of approximation grows, but decreases when the amount of 3ll-in is reduced.
Similarly, increasing d reduces the number of outer iterations, while reducing the 3ll-in augments9
the number of outer iterations. These opposite tendencies 3nally result in a reduction of the solution
time. In our experiments, we have observed that, for this problem, halving the amount of 3ll further11
makes the preconditioner very inaccurate, and the solution time grows along with the added cost of
increased degree d. Hence, a reasonable increase of the degree and reduction in the 3ll-in reduces13
both the construction and solution time, that is, in this example, the rational acceleration saves time
and memory.15

4.3. Shift and degree selection

Here, we show the dependences of the convergence rate and the stability of the preconditioner on �17
and outline an automatic process of arriving at an appropriate shift value. In [4], a strong correlation
between stability of the preconditioner and the size of E = log(‖(LU)−1‖inf) was shown and was19
suggested as a practical means of evaluating the quality of a preconditioner. We can inexpensively
compute E� as21

E� = log(‖(LU)−1e‖1);
where e is a vector of all ones and LU is the incomplete LU factorization of A+ �I .
For the problem ELTCOQUE, the amount of 3ll-in was equal to 30 and the dropping tolerance23

equal to 0 in the preconditioner construction. Without rational preconditioning and without shift
(� = 0), there was no reduction of the residual norm. Fig. 8 shows the convergence curves for25
diDerent choices of � with the lowest degree rational approximation (i.e., its degree d=1). When �
is quite large (solid line) the convergence of Sexible GMRES(54) is slow although the incomplete27
LU factors are stable (E� = 0:29). It is possible to start with some large � (say, 0.8) and gradually
decrease it as long as the indicator E� stays small. Changing � dynamically requires modifying the29

UNCORRECTED P
ROOF

22 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

0 100 200 300 400 500 600 700 800 900
-5

-4

-3

-2

-1

0

1

2

Outer iterations

lo
g1

0
re

si
du

al
 n

or
m

Constant alpha =0.8
Varying alpha
Constant alpha = 3.8E-2
Constant alpha = 6.25E-3

Fig. 8. Choosing � for the problem ELTCOQUE without rational approximation.

incomplete LU factors. Relatively inexpensive modi3cations could potentially be obtained by means1
of sparse approximate inverse techniques as mentioned in [5]. Devising an eDective procedure for
updating LU factors is beyond the scope of this paper. In the experiments, we re-factor the shifted3
matrix A each time a new shift value is taken. Since this procedure is expensive, it is performed
only at a GMRES restart. The dashed line in Fig. 8 indicates that the iterative convergence is much5
faster for varying � dynamically than for some constant large � (solid line). In this case, it is faster
not only in terms of iteration numbers as shown in Fig. 8 but also in terms of the execution times,7
which include refactoring for varying �. The solution times are 222.22 and 303:54 s, respectively.
Monitoring E� allows an early detection of a possible preconditioner instability for some small9

� indicating that it should not be decreased further. We can also use E� to 3nd a better constant
shift and re-construct a preconditioner with this shift. The dash–dotted and dotted curves show the11
convergence histories for the two constant shift values (3:8 · 10−2 and 6:25 · 10−3, respectively),
which are obtained at the points immediately preceding a sharp increase in the estimate of E� for13
two diDerent strategies of decreasing �, fast and gradual, respectively. In particular, a fast decrease,
which consists of halving � at each restart, quickly reaches a shift value corresponding to an unstable15
preconditioner. However, the preconditioner re-constructed with the constant shift value 6:25 · 10−3

obtained from this fast strategy leads to a slower convergence than the one with the shift 3:8 · 10−217
obtained from a more gradual � decrease. In fact, the constant shift 3:8 ·10−2 seems to give the best
convergence among the four shift choices. However, 3nding this optimal shift value is expensive.19

The eDect of an unstable preconditioning is especially pronounced when the shift value continues
to be halved (dash–dotted curve in Fig. 9), where the residual norm increases at about iteration 500.21
Fig. 9 presents the convergence curves of the experiments in which an iterative method attempts

UNCORRECTED P
ROOF

CAM4201

ARTICLE IN PRESS
P. Guillaume et al. / Journal of Computational and Applied Mathematics () – 23

0 100 200 300 400 500 600 700 800 900 1000
-7

-6

-5

-4

-3

-2

-1

0

1

2

Outer iterations

lo
g1

0
re

si
du

al
 n

or
m

Constant degree = 2
Varying degree
Halving alpha
Constant degree = 2, alpha = 6.25E-3

Fig. 9. Achieving high accuracy for the problem ELTCOQUE with rational approximation.

to achieve maximum accuracy in 1000 iterations given four ways to choose (�; d) in the rational1
approximation (Algorithm 2.2) of the preconditioning. Both the solid and dashed lines are for the
case when alpha is decreasing slowly. The curve for a 3xed degree of approximation is represented by3
the solid line. The case where the degree is increased by one at each restart, with initial degree 2, is
represented by the dashed line. The dotted line corresponds to the constant smallest shift (6:25·10−3)5
as given in Fig. 8. Note that keeping � constant and small enough accelerates convergence in the
3rst iterations, but the ultimate residual norm reduction may be much less than when the degree is7
varied and a large shift value is taken (dashed curve). Thus varying the degree as well as the shift �
can be bene3cial in achieving high accuracy in spite of an increase in the cost of the preconditioning9
operation.

5. Conclusion11

We have shown a strategy for building an eDective preconditioner for dealing with highly ill-
conditioned matrices. The main di=culty with such matrices is that the standard ILU preconditioners13
tend to produce an ILU factorization that is often unstable. Instability can sometimes be avoided
by using a very high level of 3ll-in to obtain an LU factorization that is very close to that of15
A. This approach may not be feasible because of its high memory and computational cost. The
alternative proposed in this paper, is to shift the matrix before computing its ILU factorization, and17
then to use a rational expansion to increase the accuracy by extrapolating it to approximate A−1.
We have explained why changing the shift or the degree during iteration helps refocus the iterative19
process in reducing residual components on diDerent parts of the spectrum and can be quite helpful

UNCORRECTED P
ROOF

24 P. Guillaume et al. / Journal of Computational and Applied Mathematics () –

CAM4201

ARTICLE IN PRESS

in improving convergence. Numerical experiments support this hypothesis. They also show that the1
method can succeed in solving rather di=cult problems without requiring an excessive amount of
memory.3

References

[1] J.L. Batoz, G. Dhatt, ModNelisation des structures par NelNements 3nis, Vol. 3: coques, HermYes, Paris, 1992.5
[2] P.N. Brown, Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput. 11

(1990) 450–481.7
[3] A. Chapman, Y. Saad, DeSated and augmented Krylov subspace techniques, Numer. Linear Algebra Appl. 4 (1997)

43–66.9
[4] E. Chow, Y. Saad, Experimental study of ILU preconditioners for inde3nite matrices, J. Comput. Appl. Math. 86

(1997) 387–414.11
[5] E. Chow, Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations, SIAM J. Sci. Comput. 19 (1998)

995–1023.13
[6] H.C. Elman, A stability analysis of incomplete LU factorizations, Math. Comput. 47 (1986) 191–217.
[7] R. Glowinski, H.B. Keller, L. Reinhart, Continuation-conjugate gradient methods for the least squares solution of15

nonlinear boundary value problems, SIAM J. Sci. Statist. Comput. 6 (1985) 793–832.
[8] T.A. ManteuDel, An incomplete factorization technique for positive de3nite linear systems, Math. Comput. 34 (1980)17

473–497.
[9] R.B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl. 16 (1995)19

1154–1171.
[10] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood CliDs, NJ, 1980.21
[11] A. Ruhe, Rational Krylov sequence methods for eigenvalue computations, Linear Algebra Appl. 58 (1984) 391–405.
[12] Y. Saad, A Sexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Statist. Comput. 14 (1993)23

461–469.
[13] Y. Saad, Theoretical error bounds and general analysis of a few Lanczos-type algorithms, in: J.D. Brown, M.T.25

Chu, D.C. Ellison, R.J. Plemmons (Eds.), Proceedings of the Cornelius Lanczos International Centenary Conference,
SIAM, Philadelphia, PA, 1994, pp. 123–134.27

[14] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, New York, 1996.
[15] Y. Saad, B. Suchomel, ARMS: an algebraic recursive multilevel solver for general sparse linear systems, Technical29

Report umsi-99-107, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 1999.
[16] M. Sosonkina, J.T. Melson, Y. Saad, L.T. Watson, Preconditioning strategies for linear systems in tire design, Numer.31

Linear Algebra Appl. 7 (2000) 743–757.

	Rational approximation preconditioners for sparselinear systems
	Introduction
	Rational approximation preconditioning
	Approximations to 1/lambda
	Compounding ILU and shifting
	A simple illustration
	Inner--outer rational preconditioning
	A multiscale-type procedure using different shifts
	Tests with inner--outer techniques and variable shift

	Analysis in the case of an exact factorization
	Error bounds for the first iterations
	Asymptotic error bounds

	Rational acceleration for realistic problems
	Test problems and the components of the iterative solution
	Rational acceleration and the accuracy of preconditioning
	Shift and degree selection

	Conclusion
	References

